IMPORTANT ELECTRICAL EQUATIONS

Capacitors

Capacitive Reactance in Ohms = $X_C = 1/(2 \times 3.14 \times f \times C)$

Parallel Impedance in Ohms = $Z = X_{C1} + X_{C2} + X_{C3}$...

Series Impedance in Ohms = $Z = 1/(1/X_{C1}) + (1/X_{C2})...$

Current, Amperes (I)

Single-Phase = I = P/E The

Three-Phase = $I = P/(E_{L-L} \times 1.732)$

Efficiency

Efficiency = Output/Input

Input = Output/Efficiency

Output = Input × Efficiency

Inductors

Inductive Reactance in Ohms = $X_L = 2 \times 3.14 \times f \times L$

Parallel Impedance in Ohms = $Z = 1/(1/X_{L1}) + (1/X_{L2}) + (1/X_{L3})$

Series Impedance in Ohms = $Z = X_{L1} + X_{L2} + X_{L3}$

Impedance (Z)

Impedance in Ohms = $Z = \sqrt{[R^2 + (X_L^2 - X_C^2)]}$

Motor FLA/Watts

FLA, Single-Phase = $(hp \times 746W)/(E \times Eff \times PF)$

FLA, Three-Phase = $(hp \times 746W)/(E \times 1.732 \times Eff \times PF)$

Watts = Horsepower × 746W

Motors, Dual-Voltage

Neutral Current

Single-Phase, 120/240V System: I_{Neutral} = Line 1 – Line 2

Three-Phase, 120/208V, 4-wire Wye Connected System:

 $I_{\text{Neutral}} = \sqrt{(I_{\text{L}1}^2 + I_{\text{L}2}^2 + I_{\text{L}3}^2) - ((I_{\text{L}1} \times I_{\text{L}2} +) - (I_{\text{L}2} \times I_{\text{L}3}) - (I_{\text{L}1} \times I_{\text{L}3})}$

Parallel Circuit Resistance

 R_T = Resistance/Number of Resistors R_T = $(R_1 \times R_2)/(R_1+R_2)$

 $R_T = 1/(1/R_1 + 1/R_2 + 1/R_3)$

Power Factor

PF = W/VA

VA = W/PF

 $W = VA \times PF$

Series Circuit Resistance

 $R_T = R_1 + R_2 + R_3...$

 $E_T = E_1 + E_2 + E_3...$

Short-Circuit Calculation

Short-Circuit Current = Secondary Amperes/Transformer Z%

Temperature Conversions

 $C^{\circ} = 5/9 \times (Temp F^{\circ} - 32^{\circ})$

 $F^{\circ} = (9/5 \times \text{Temp C}^{\circ}) + 32^{\circ}$

Transformers, Single-Phase

 $I_{Primary} = Transformer VA/E_{L-L}$

 $I_{Secondary} = Transformer VA/E_{L-L}$

Transformer $VA = E_{L-L} \times I_{Secondary}$

Transformers, Three-Phase

 $I_{Primary} = Transformer VA/(E_{L-L} \times 1.732)$

 $I_{Secondary} = Transformer VA/(E_{L-L} \times 1.732)$

Transformer VA = $(E_{L-L} \times 1.732) \times I_{Secondary}$

Turns Ratio

Turns Ratio = Primary Volts:Secondary Volts

Secondary Volts = Primary Volts/Turns Ratio

Primary Volts = Secondary Volts × Turns Ratio

Volt-Amperes

Single-Phase = $VA = E \times I$

Three-Phase = $VA = (E_{L-L} \times 1.732) \times I$

Voltages

Peak Voltage = Effective (RMS) Voltage × 1.414

Effective (RMS) Voltage = Peak Voltage × 0.707

High-Leg Voltage = $V_{L-to-N} \times 1.732$

Voltage Drop, Single-Phase

Voltage Drop = $(2 \times K \times I \times D)/Cmil$

Wire Size = $(2 \times K \times I \times D)/VD$

Distance = $Cmil \times VD/(2 \times K \times I)$

 $K = Cu, 12.90\Omega - Al, 21.20\Omega$

Voltage Drop, Three-Phase

Voltage Drop = $(1.732 \times K \times I \times D)/Cmil$

Wire Size = $(1.732 \times K \times I \times D)/VD$

Distance = $Cmil \times VD/(1.732 \times K \times I)$

 $K = Cu, 12.90\Omega - Al, 21.20\Omega$

