ELECTRICAL EQUATIONS

 $R_{T} = R_1 + R_2 + R_3...$

Capacitors

Capacitive Reactance in Ohms = $X_C = 1/(2 \times 3.14 \times f \times C)$ Parallel Impedance in Ohms = $Z = X_{C1} + X_{C2} + X_{C3}$... Series Impedance in Ohms = $Z = 1/(1/X_{C1}) + (1/X_{C2})$...

Current, Amperes (I)

Single-Phase = I = P/E

Three-Phase = $I = P/(E_{L-L} \times 1.732)$

Efficiency				
Efficiency = Output/Input	Input =	Output/Efficiency		
Output = Input × Efficiency				

Inductors

Impedance (Z)

Impedance in Ohms = $Z = \sqrt{R^2 + (X_L^2 - X_C^2)}$

Motor FLA/Watts

FLA, Single-Phase = (hp × 746W)/(E × Eff × PF) FLA, Three-Phase = (hp × 746W)/(E × 1.732 × Eff × PF) Watts = Horsepower × 746W

Motors, Dual-Voltage

Neutral Current

Single-Phase, 120/240V System: I_{Neutral} = Line 1 – Line 2 Three-Phase, 120/208V, 4-wire Wye Connected System:

$N_{eutral} = \sqrt{(I_{L1}^2 + I_{L2}^2 + I_{L3}^2) - (I_{L1} \times I_{L2}) - (I_{L2} \times I_{L3}) - (I_{L1} \times I_{L3})}$

Series	Circuit	Resistance

 $E_{T} = E_{1} + E_{2} + E_{3}...$

Short-Circuit Calculation

Short-Circuit Current = Secondary Amperes/Transformer Z%

Temperature Conversions

$C^{\circ} = 5/9 \times (\text{Temp F}^{\circ} - 32^{\circ})$ $F^{\circ} = (9/5 \times \text{Temp C}^{\circ}) + 32^{\circ}$

Transformers, Single-Phase

 $I_{Primary} = Transformer VA/E_{L-L}$ $I_{Secondary} = Transformer VA/E_{L-L}$ Transformer VA = $E_{L-L} \times I_{Secondary}$

Transformers, Three-Phase

 $I_{Primary} = Transformer VA/(E_{L-L} \times 1.732)$ $I_{Secondary} = Transformer VA/(E_{L-L} \times 1.732)$ $Transformer VA = (E_{L-L} \times 1.732) \times I_{Secondary}$

Turns Ratio

Turns Ratio = Primary Volts:Secondary Volts Secondary Volts = Primary Volts/Turns Ratio Primary Volts = Secondary Volts × Turns Ratio

Volt-Amperes

Single-Phase = $VA = E \times I$ Three-Phase = $VA = (E_{L-L} \times 1.732) \times I$

Voltages

Voltage Drop, Single-Phase

Voltage Drop = $(2 \times K \times I \times D)/Cmil$ Wire Size = $(2 \times K \times I \times D)/VD$ Distance = $(Cmil \times VD)/(2 \times K \times I)$ K = Cu, 12.90 Ω – Al, 21.20 Ω

Parallel Circuit Resistance

 $\begin{array}{ll} R_T = & Resistance/Number of Resistors \\ R_T = & 1/(1/R_1 + 1/R_2 + 1/R_3) \end{array} \\ \end{array} \\ \end{array}$

Power Factor		
PF = W/VA	VA = W/PF	$W = VA \times PF$

Voltage Drop, Three-Phase

Voltage Drop = $(1.732 \times K \times I \times D)/Cmil$ Wire Size = $(1.732 \times K \times I \times D)/VD$ Distance = $(Cmil \times VD)/(1.732 \times K \times I)$ K = Cu, 12.90 Ω - Al, 21.20 Ω

