IMPORTANT ELECTRICAL EQUATIONS

Capacitors

Capacitance Reactance in Ohms = X_C = 1/(2 × 3.14 × F × C) Parallel Impedance in Ohms = Z = X_{C1} + X_{C2} + X_{C3} ...

Series Impedance in Ohms = $Z = 1/(1/X_{C1}) + (1/X_{C2})...$

Current, Amperes (I)

Single-Phase = I = P/E Three-Phase = $I = P/(E_{L-L} \times 1.732)$

Efficiency

Efficiency = Output/Input Input = Output/Efficiency

Output = Input × Efficiency

Inductors

Inductance Reactance in Ohms = $X_L = 2 \times 3.14 \times F \times L$) Parallel Impedance in Ohms = $Z\Omega = 1/(1/X_{L1}) + (1/X_{L2}) + (1/X_{L3})$ Series Impedance in Ohms = $Z\Omega = X_{L1} + X_{L2} + X_{L3}$

Impedance (Z)

Impedance = $Z\Omega = \sqrt{[R^2 + (X_L^2 - X_C^2)]}$

Motor FLA/Watts

FLA Single-Phase = $(hp \times 746W)/(E \times Eff \times PF)$

FLA Three-Phase = $(hp \times 746W)/(E \times 1.732 \times Eff \times PF)$

Watts = Horsepower × 746W

Dual-Voltage Motors

Parallel Circuits

 R_T = Resistance/Number of Resistors R_T = $(R_1 \times R_2)/(R_1+R_2)$

 $R_T = 1/(1/R_1 + 1/R_2 + 1/R_3)$

Power Factor

PF = W/VA VA = W/PF $W = VA \times PF$

Series Circuits

 $R_T = R_1 + R_2 + R_3...$ $E_T = E_1 + E_2 + E_3...$

Short-Circuit Calculation

Short-Circuit Current = Secondary Amperes/Transformer Z%

Temperature Conversions

 $C^{\circ} = 5/9 \times (\text{Temp F}^{\circ} - 32^{\circ})$ $F^{\circ} = (9/5 \times \text{Temp C}^{\circ}) + 32^{\circ}$

Transformers Single-Phase

 $I_{Primary}$ = Transformer VA/E_{L-L} $I_{Secondary}$ = Transformer VA/E_{L-L} Transformer VA = $E_{L-L} \times I_{Secondary}$

Transformers Three-Phase

 $I_{Primary}$ = Transformer VA/(E_{L-L} × 1.732) $I_{Secondary}$ = Transformer VA/(E_{L-L} × 1.732) Transformer VA = (E_{L-L} × 1.732) × I_{Secondary}

Turns Ratio

Turns Ratio = Primary Volts : Secondary Volts Secondary Volts = Primary Volts/Turns Ratio Primary Volts = Secondary Volts × Turns Ratio

Volt-Ampere

Single-Phase = $VA = E \times I$

Three-Phase = $VE = (E_{L-L} \times 1.732) \times I$

Voltages

Peak Voltage = Effective (RMS) Voltage \times 1.414 Effective (RMS) Voltage = Peak Voltage \times 0.707 High-Leg Voltage = $V_{L-to-N} \times 1.732$

Voltage Drop, Single-Phase

Voltage Drop = $(2 \times K \times I \times D)/Cmil$ Wire Size = $(2 \times K \times I \times D)/VD$ Distance = $Cmil \times VD/(2 \times K \times I)$ $K = Cu, 12.9\Omega Cu - Al, 21.2\Omega$

Voltage Drop, Three-Phase

Voltage Drop = $(1.732 \times K \times I \times D)/Cmil$ Wire Size = $(1.732 \times K \times I \times D)/VD$ Distance = $Cmil \times VD/(1.732 \times K \times I)$ $K = Cu, 12.9\Omega Cu - Al, 21.2\Omega$

