This article was posted 09/28/2012 and is most likely outdated.

Mike Holt - SBU Study Reveals Harmful Effects of CFL Bulbs to Skin
header
SBU Study Reveals Harmful Effects of CFL Bulbs to Skin

SBU Study Reveals Harmful Effects of CFL Bulbs to Skin
Research shows that energy efficient bulbs safest when placed behind additional glass cover

Image

STONY BROOK, NY, July 18, 2012 – Inspired by a European study, a team of Stony Brook University researchers looked into the potential impact of healthy human skin tissue (in vitro) being exposed to ultraviolet rays emitted from compact fluorescent light (CFL) bulbs. The results, “The Effects of UV Emission from CFL Exposure on Human Dermal Fibroblasts and Keratinocytes in Vitro,” were published in the June issue of the journal of Photochemistry and Photobiology.

Stony Brook researchers collected CFL bulbs purchased from different locations across Suffolk and Nassau counties, and then measured the amount of UV emissions and the integrity of each bulb’s phosphor coatings. Results revealed significant levels of UVC and UVA, which appeared to originate from cracks in the phosphor coatings, present in all CFL bulbs studied.

At Stony Brook’s Advanced Energy Research and Technology Center (AERTC), the team took the same bulbs and studied the effects of exposure on healthy human skin tissue cells, including: fibroblasts, a type of cell found in connective tissue that produces collagen; and keratinocytes, an epidermal cell that produces keratin, the key structural material in the outer layer of human skin. Tests were repeated with incandescent light bulbs of the same intensity and with the introduction of Titanium Dioxide (TiO2) nanoparticles, which are found in personal care products normally used for UV absorption.

“Our study revealed that the response of healthy skin cells to UV emitted from CFL bulbs is consistent with damage from ultraviolet radiation,” said Professor Rafailovich. “Skin cell damage was further enhanced when low dosages of TiO2 nanoparticles were introduced to the skin cells prior to exposure.” Rafailovich added that incandescent light of the same intensity had no effect on healthy skin cells, with or without the presence of TiO2.

Click here to read the full article posted on the Stony Brook University Website.

footer
This newsletter was sent to 24297 Subscribers
Comments

Get notified when new comments are posted here
* Your Email:
 
        
 
Add Your Comments to this Newsletter
* Your Name:
   Your name will appear under your comments.

* Your Email:
   Your email address is not displayed.
* Comments:

Email Notification Options:
Notify me when a reply is posted to this comment
Notify me whenever a comment is posted to this newsletter